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One-dimensional asymmetric diffusion model without exclusion

Tomohiro Sasamoto and Miki Wadati
Department of Physics, Graduate School of Science, University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-0033, Japa
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A one-dimensional asymmetric diffusion model on a periodic chain is proposed. The model is defined in
terms of the master equation. In contrast with the asymmetric simple exclusion process, particles are not
subject to the exclusion interaction: each lattice site can accommodate more than one particle. The model is
solved by the Bethe ansatz method and the resulting Bethe equation is analyzed in the thermodynamic limit.
The finite size correction of the energy gap is calculated to beO(L23/2), whereL denotes the length of the
chain.@S1063-651X~98!12109-8#

PACS number~s!: 02.50.Ey,05.70.Ln,64.60.Ht
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I. INTRODUCTION

In a variety of fields of physics, chemistry, and biolog
there exist a lot of phenomena that can be well described
stochastic models of many particles. It is interesting t
highly nontrivial behaviors of systems at far-from equili
rium can sometimes be explained by stochastic models
fined by rather simple rules. For instance, the o
dimensional asymmetric simple exclusion process~ASEP! is
known to be relevant to the problems such as interf
growth and traffic flow@1–3#. The ASEP is a lattice mode
of particles that hop to nearest-neighboring sites stocha
cally. Each particle moves to the right~left! nearest neigh-
boring site with a probabilityDRdt (DLdt) in an infinitesi-
mal interval dt. Without loss of generality we assume
<DL<DR hereafter. In addition, particles are subject
hard-core exclusion: each site is either occupied only by
particle or empty. The ASEP may seem a too simplifi
model since the interaction among particles is only throu
the hard-core exclusion. It shows, however, rich nonequi
rium behaviors and has been intensively studied by m
researchers.

An important feature of one-dimensional stochastic m
els is that we can sometimes obtain exact solutions by a
lytic methods, for instance, the Bethe ansatz and free ferm
techniques@4,5#. To apply such methods, it is convenient
formulate the problems by the master equation in the form
the imaginary-time Schro¨dinger equation,

d

dt
P52HP. ~1!

Here P and H symbolically denote the probability distribu
tion of the system and the transition rate matrix, respectiv
Although H is in general non-Hermitian, we callH the
Hamiltonian. The ASEP is known to be exactly solvab
since the Hamiltonian of the ASEP is connected to
Heisenberg Hamiltonian for magnets through a similar
transformation. To be more precise, the ASEP is a spe
case of the asymmetricXXZ chain, which is a non-Hermitian
generalization of the well-knownXXZ chain@6–9#. Besides,
the asymmetricXXZ chain is related to the asymmetric si
vertex model, which is interpreted as the six-vertex mode
electric fields@10–12#. The Boltzmann weights of the asym
PRE 581063-651X/98/58~4!/4181~10!/$15.00
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metric six-vertex model are connected to those of the us
six-vertex model through a gauge transformation. Hence
Boltzmann weights satisfy the Yang-Baxter equation and
model is easily shown to be integrable. Interestingly,
physical properties of the asymmetric six-vertex model a
the asymmetricXXZ chain are much richer than the origin
six-vertex model and theXXZ chain. They are still under
extensive investigations@9,13–15#.

The Bethe equation of the asymmetricXXZ chain can be
solved exactly in the thermodynamic limit@16,17#. More-
over, the analysis of the Bethe equation enables us to ob
the finite size corrections of the low-lying energies of t
asymmetricXXZ chain @6–9#. In particular, for the ASEP,
the energy gap was shown to scale asO(L23/2) with L being
the length of the chain. The exponent 3/2 is the same as
dynamic critical exponent of the Kardar-Parisi-Zhang~KPZ!
equation in one dimension@18#, which is a nonlinear sto-
chastic equation for the height of growing surfaces. This
plausible since the ASEP is believed to be a discretized
sion of the noisy Burgers equation@6#. The noisy Burgers
equation and the KPZ equation are related to each othe
the change of the variable from ‘‘height’’ to ‘‘slope’’ of
growing surfaces. Thus the ASEP is considered to belon
the KPZ universality class.

The above-mentioned scaling is considered as a man
tation of the anisotropic critical phenomena@19,20#. They
often appear in non-Hermitian problems but have not b
well understood compared with the isotropic one. For
stance, while the hard-core exclusion interaction is regar
as the origin of the interesting behaviors of the ASEP,
problem of, i.e., what kind of interactions among particl
bring the process into the KPZ universality class, has b
less addressed. Hence more explicit model studies seem
portant to understand what the universality means for s
chastic models. In Refs.@21,22#, an asymmetric diffusion
model without exclusion was shown to be integrable and
have the sameR matrix as that of the ASEP. The Hami
tonian of the model is defined in terms of the so-calledq-
boson operators. Theq-boson model is expected to belong
the KPZ universality class since it shares the sameR matrix
with the ASEP. However, the Bethe equation for the mo
is somewhat different from that for the ASEP and nee
some modifications to analyze.
4181 © 1998 The American Physical Society
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The main purpose of this paper is to show that we c
define an asymmetric diffusion model without exclusion,
which the Bethe ansatz method is applicable and the re
ing Bethe equation is solvable parallel to the ASEP ca
Basically, the model is similar to the ASEP: each particle
an asymmetric random walker. However, more particles t
one can be on the same site and even hop simultaneous
a nearest-neighboring site. In spite of these differences,
model and the ASEP share quite similar Bethe equations
hence similar physical properties. The finite size correct
of the energy gap is calculated to beO(L23/2), which is the
same as that for the ASEP. This suggests that the m
presented in this paper belongs to the KPZ universality cl

The plan of this paper is as follows. In the next section,
asymmetric diffusion model without exclusion is define
The model is shown to be solvable by the Bethe ansat
Sec. III and the resulting Bethe equation is analyzed in S
IV. In Sec. V, the finite size correction of the energy gap
calculated. The last section is devoted to the concluding
marks.

II. ASYMMETRIC DIFFUSION MODEL
WITHOUT EXCLUSION

Consider a one-dimensional lattice with periodic boun
ary condition. We introduce a model with particle numb
conservation. With the particle numberN fixed, let
PN(x1 , . . . ,xN ;t) denote the probability that the particle
are located at lattice sitesx1 , . . . ,xN at time t. Since we do
not distinguish one particle from another, we assumex1
<x2<•••<xN . We define the process in terms of the ma
ter equation forPN(x1 , . . . ,xN ;t) in the following. For
comparison, the definition of the ASEP will also be given

Before giving the definition for generalN, we proceed
with theN51 andN52 cases. For one particle, the proce
is nothing but the asymmetric random walk in a continuo
time. Puttingg5DL /DR (0<g<1) and rescaling time, the
master equation reads

d

dt
P1~x;t !5P1~x21;t !1gP1~x11;t !2~11g!P1~x;t !,

~2!

which is common to the model and the ASEP. Symbolica
we represent the process~2! as

10→
1

01, 01→
g

10, ~3!

where ‘‘0’’ and ‘‘1’’ indicate the particle numbers on a site
Next we consider the two-particle case. We assume

each particle performs the asymmetric random walk if
distance between the two particles is sufficiently lar
Hence the master equation forP2(x1 ,x2 ;t) is

d

dt
P2~x1 ,x2 ;t !5P2~x121,x2 ;t !1gP2~x111,x2 ;t !

1P2~x1 ,x221;t !1gP2~x1 ,x211;t !

22~11g!P2~x1 ,x2 ;t !. ~4!
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For the ASEP, the hard-core exclusion restricts an allow
region ~the physical region! of the coordinatesx1 ,x2 to
x22x1>1. The above master equation~4! applies only for
x22x1.1. Whenx22x151, we have to employ a slightly
different equation due to the exclusion. The master equa
for this case is given by

d

dt
P2~x,x11;t !5P2~x21,x11;t !1gP2~x,x12;t !

2~11g!P2~x,x11;t !. ~5!

We notice that the master equation~5! for the boundary of
the physical region is equivalent to putting the condition

~11g!P2~x,x11;t !5P2~x,x;t !1gP2~x11,x11;t !
~6!

in Eq. ~4!. It is only a matter of convenience whether w
define the ASEP for theN52 case by Eq. ~4! for
x22x1.1 and Eq.~5! or by Eq.~4! for x22x1>1 and Eq.
~6!.

Now, for N52, we define the model to be considered
this paper. First, the physical region of the coordinatesx1 ,x2
is x2>x1 . Whenx15x2 , two particles are on the same sit
The particles do not have hard-core exclusion interaction
we put x15x2 in the master equation~4!, there appear the
functionsP2(x,x21;t) andP2(x11,x;t), of which the vari-
ables are out of the physical region. To avoid such incon
tencies, we impose the following condition:

~11g!P2~x,x21;t !5P2~x21,x21;t !1gP2~x,x;t !.
~7!

Then the master equation forP2(x,x;t) is shown to be

d

dt
P2~x,x;t !5P2~x21,x;t !1

1

@2#
P2~x21,x21;t !

1gP2~x,x11;t !1
g2

@2#
P2~x11,x11;t !

2S 11
1

@2#
1g1

g2

@2# D P2~x,x;t !, ~8!

TABLE I. Particle hopping rates for the MADM~multiparticle-
hopping asymmetric diffusion model! for the two-particle case. The
numbers ‘‘0,’’ ‘‘1,’’ and ‘‘2’’ in the leftmost boxes indicate the
particle numbers on a site. For comparison, the rates for nonin
acting particles are also shown.

rate ~MADM ! rate ~noninteracting!

20→02 1/@2# 0

02→20 g2/@2# 0

20→11 1 2

02→11 g 2 g

11→02 1 1

11→20 g g
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where@2#511g. Similar to the ASEP case, it is equivale
to define the model either by Eq.~4! for x2.x1 and Eq.~8!
or by Eq. ~4! for x2>x1 and Eq.~7!. To make the defined
process clear, we list the particle hopping rates other than
~3! in Table I. In the table, the particle hopping rates f
noninteracting asymmetric random walkers are also sho
The process we have defined is different from the nonin
acting particles in two respects. First, the rates for individ
hopping are smaller than those for the noninteracting p
ticles when there are two particles on a site (20→11,02
→11). Second, two particles can hop simultaneously to
same nearest-neighboring site (20→02,02→20). To empha-
size the latter property, we call the model the multipartic
hopping asymmetric diffusion model~MADM !.

The choice of the condition~7! is essential for the follow-
ing computations. It will be shown that the Bethe equatio
q.

n.
r-
l
r-

e

-

s

of the MADM and the ASEP can be analyzed in a para
fashion. Here, for later use, we introduce the so-calledq
number:

@n#5
12gn

12g
. ~9!

Of course@2#511g in Eq. ~8! is consistent with the defi-
nition ~9!. In the limit g→1, @n# simply reduces ton.

The master equation for the generalN-particle case is de-
fined similarly. The physical region of the coordinat
x1 , . . . ,xN is xj 112xj>1 and xj 11>xj for j 51, . . . ,N
21 for the ASEP and the MADM, respectively. The mas
equation is given by
e

d

dt
PN~x1 , . . . ,xj , . . . ,xN ;t !5(

j 51

N

@PN~ . . . ,xj21, . . . ;t !1gPN~ . . . ,xj11, . . . ;t !2~11g!PN~ . . . ,xj , . . . ;t !#,

~10!

while the condition at the boundary of the physical region is

~11g!PN~ . . . ,xj ,xj11, . . . ;t !5PN~ . . . ,xj ,xj , . . . ;t !1gPN~ . . . ,xj11,xj11, . . . ;t ! ~ j 51, . . . ,N21! ~11!

for the ASEP and

~11g!PN~ . . . ,xj ,xj21, . . . ;t !5PN~ . . . ,xj21,xj21, . . . ;t !1gPN~ . . . ,xj ,xj , . . . ;t ! ~ j 51, . . . ,N21! ~12!

for the MADM.
For the MADM, one may wonder whether we can write down the master equation forPN(x1 , . . . ,xN ;t) when somexj ’s

are equal, only in terms ofPN(x1 , . . . ,xN ;t)’s in the physical region. It is possible to do so by repeated use of Eq.~12!. In
the case in which the consecutiveM (M<N) xj ’s are equal, it is sufficient to know the equation forPM(x, . . . ,x;t) (x1
5•••5xM5x). For instance, the master equation forPN(x,x,x3 , . . . ,xN ;t) with xj 11.xj ( j 53, . . . ,N21) andx3.x reads
@cf. Eq. ~8!#

d

dt
PN~x,x,x3 , . . . ,xN ;t !5PN~x21,x,x3 , . . . ,xN ;t !1

1

@2#
PN~x21,x21,x3 , . . . ,xN ;t !1gPN~x,x11,x3 , . . . ,xN ;t !

1
g2

@2#
PN~x11,x11,x3 , . . . ,xN ;t !1(

j 53

N

@PN~x,x, . . . ,xj21, . . . ;t !1gPN~x,x, . . . ,xj

11, . . . ;t !#2F ~N21!~11g!1
1

@2#
1

g2

@2#GPN~x,x,x3 , . . . ,xN ;t !. ~13!

It turns out that the master equation forPN(x, . . . ,x;t) (x15•••5xN5x) can be rewritten in a compact form in terms of th
q number:

~14!
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It is clear that more particles than one can hop simu
neously to the same nearest-neighboring site. A proof of
~14! is shown in Appendix A.

III. CONSTRUCTION OF EIGENFUNCTION
BY BETHE ANSATZ METHOD

Let the word ‘‘energy’’ mean the eigenvalue for th
eigenstate of the process. It is not necessarily a real num
The real part of the energy corresponds to the decay rat
the eigenstate. Since the MADM is a stochastic model,
real part of the energy is larger than or equal to zero. T
state with energy zero corresponds to the stationary sta
the system. If we assume the existence of a unique statio
state, the system goes to the stationary state irrespectiv
the initial condition when the timet→`. The stationary state
of the MADM on the periodic chain is rather trivial for eac
particle numberN: every possible configuration withN par-
ticles has an equal weight.

In order to study the time-dependent properties of the s
tem, we need information about the excited states. In part
lar, the long time behaviors of the system strongly depend
the first excited state. In this section, we construct the eig
functions of the MADM by the Bethe ansatz method. T
discussion below is analogous to those for the Heisenb
spin chain @23# and the ASEP@24#. The resulting Bethe
equation will be analyzed in the next section.

We proceed with theN51 andN52 cases, and presen
the formulas for generalN. First we consider theN51 case.
We substitute

P1~x;t !5e2eztzx ~15!

into Eq. ~2!. The energyez is easily calculated as

ez5~12z21!1g~12z!. ~16!

Because of the periodic boundary conditionP1(x1L;t)
5P1(x;t), z should satisfyzL51.

Second, we consider theN52 case. Assuming the tim
dependence as exp(2E2t), we set in Eq.~4!

P2~x1 ,x2 ;t !5e2E2tP2~x1 ,x2!, ~17!

where

P2~x1 ,x2!5A12z1
x1z2

x21A21z2
x1z1

x2 . ~18!

The energyE2 is the sum of the energies of the two particle

E25ez1
1ez2

. ~19!

The condition~7! fixes the two-particleS-matrix A12/A21 as

A12

A21
52

11gz1z22~11g!z2

11gz1z22~11g!z1
. ~20!

In the sequel, we employ the normalization

Ajk5
11gzjzk2~11g!zk

zj2zk
. ~21!
-
q.

er.
of
e
e
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rg

,

The periodic boundary condition gives the Bethe equati
for N52,

z1
L52A12/A21, z2

L52A21/A12. ~22!

For the generalN-particle case, we set in Eq.~10!

PN~x1 , . . . ,xN ;t !5e2ENtPN~x1 , . . . ,xN!, ~23!

where

PN~x1 , . . . ,xN!5 (
sPSN

As~1!•••s~N!zs~1!

x1
•••zs~N!

xN .

~24!

Here the symbolSN denotes all permutations ofN numbers
$1, . . . ,N% and s is an element ofSN . The energyEN is
simply the sum of the energies ofN particles,

EN5(
j 51

N

ezj
. ~25!

The coefficientsAj 1 , . . . ,j N
are fixed by Eqs.~12!. They are

written in a product of the coefficientsAjk ~21!,

Aj 1 , . . . ,j N
5 )

1<k, l<N
Aj kj l

. ~26!

Imposing the periodic boundary condition on Eq.~24! gives
the Bethe equation,

zj
L5~21!N21)

l 51

N
11gzjzl2~11g!zl

11gzjzl2~11g!zj
~27!

for j 51, . . . ,N. In the following sections, we shall solve th
Bethe equation~27! in the thermodynamic limit and calcu
late the finite size correction for the gap of the energy~25!.

Taking the logarithm of Eq.~27! and introducing a new
variablea by

z215
11geia

11eia
, ~28!

we have

p0~a j !5
2p

L
I j1

1

L(
l 51

N

Q~a j ,a l !. ~29!

Here we have defined the functionsp0(a) andQ(a,b) by

p0~a!52 i lnF11geia

11eia G , ~30!

Q~a,b!5Q~a2b!52 i lnF sinhFn1
i

2
~a2b!G

sinhFn2
i

2
~a2b!GG ,

~31!

with g5exp(22n) (0<n,`). A choice of the set$I j%
will be shown shortly. The advantage of using the variablea
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is clear. To solve the integral equation resulting from t
Bethe equation in the thermodynamic limit, it is essen
that the functionQ(a,b) depends on the difference of th
argumentsa andb. The functionQ(a) appears also in the
Bethe equation for the ASEP@16,17#. The only difference in
the Bethe equations for the MADM and the ASEP is t
explicit forms of the functionp0(a).

Different sets$I j% correspond to different energy eige
states of the system. In particular, the stationary state co
sponds to the choice

I j52
N11

2
1 j ~32!

for j 51, . . . ,N, whereas the first excited state is associa
with the set

I j52
N11

2
1 j ~33!

for j 51, . . . ,N21 andI N5(N11)/2.

IV. BETHE EQUATION IN THE THERMODYNAMIC
LIMIT

In this section, we analyze the Bethe equation~29!. The
discussions proceed parallel to those for the asymmetric
vertex model@16,17# in spite of the difference of the functio
p0(a). As is often the case, the Bethe equation~29! cannot
be solved explicitly for finiteL and N. We consider the
thermodynamic limitL,N→` with N/L5r fixed. One then
assumes that the solutions$a j% for the Bethe equation ar
distributed densely along a smooth curveC in the complexa
plane in the thermodynamic limit@10,11#. From the symme-
try of the Bethe equation, the curveC is symmetric with
respect to the imaginary axis. The endpoints of the curvC
are denoted by (2a1 ib) and (a1 ib). Next, letR(a)L/2p
denote the density of the roots on the curve. In addition,
defines a functionF(a) such thatdF/da5R(a)/2p along
the curve withF50 at the midpoint ofC.

The normalization of the functionR(a) is

1

2pE2a1 ib

a1 ib

R~a!da5r5F~a1 ib !2F~2a1 ib !.

~34!

SinceF(2a1 ib)52F(a1 ib) due to the above-mentione
symmetry, we have

F~a1 ib !5
r

2
. ~35!

In the thermodynamic limit, the Bethe equation~29! has the
form

p0~a!52pF~a!1
1

2pE2a1 ib

a1 ib

Q~a2b!R~b!db. ~36!

Taking the derivative with respect toa in Eq. ~36!, we get
the integral equation for the density of the roots,R(a):
e
l

e-

d

x-

e

R~a!1
1

2pE2a1 ib

a1 ib

K~a2b!R~b!db5z~a!, ~37!

where

z~a!5
d

da
p0~a!52

sinhn

coshn1cos~a1 in!
, ~38!

K~a!5
d

da
Q~a!5

sinh~2n!

cosh~2n!1cosa
. ~39!

We want to solve Eq.~37! and obtain the explicit expressio
of R(a).

We introduce the transformationa→u5a2 ib (b→v
5b2 ib) to obtain integrals running over the real axis fro
v52a to v5a. After this transformation, the function
p0(a) and R(a) depend on the parameterb and will be
denoted byp0(u,b) and R(u,b), respectively. Equations
~36! and ~37! are rewritten as

p0~u,b!52pF~u,b!1
1

2pE2a

a

Q~u2v !R~v,b!dv,

~40!

R~u,b!1
1

2pE2a

a

K~u2v !R~v,b!dv5z~u,b!, ~41!

where

z~u,b!52
sinhn

coshn1cos@u1 i ~b1n!#
. ~42!

In the following we setb.0 anda52p. The choices are
valid for the ASEP and are expected to hold for the MAD
as well from the numerical calculations for smallL and N.
We first solve the integral equation~41! by the Fourier trans-
formation. We expand the functionsK(u),z(u,b),R(u,b) in
the Fourier series:

X~u!5 (
n52`

`

X̂ne2 inu, ~43!

whereX stands forK,z,R. The Fourier coefficientsK̂n are
the same as those given in@16#,

K̂n5e22unun, ~44!

and ẑn are calculated as

ẑn5H 0 ~n>0!,

2~21!n21e~b1n!nsinh~nn! ~n,0!. ~45!

In terms of the Fourier coefficients, the integral equati
~41! is rewritten as

R̂n@12K̂n#5 ẑn . ~46!

Hence, fornÞ0, we get
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R̂n5H 0 ~n.0!

~2 !nebn ~n,0!. ~47!

Inserting Eq.~47! into Eq. ~43!, we find

R~u,b!5R̂02
eiu2b

11eiu2b
. ~48!

The coefficientR̂0 is not yet determined since the Eq.~46!

becomes trivial whenn50. The coefficientR̂0 is fixed by the
conditionR̂(p,b)50 @17# as

R̂052
e2b

12e2b
. ~49!

Next we expressr5N/L in terms of the parameterb.
Settingu52p in Eq. ~40! and using Eq.~35!, we find

p0~2p,b!5pr2
1

2pE2p

p

Q~2p2v !R~v,b!dv. ~50!

From ~30!, the left-hand side is shown to be

p0~2p,b!52 i lnF12e2~b12n!

12e2b G . ~51!

The second term on the right-hand side is rewritten as

1

2pE2p

p

Q~2p2v !R~v,b!dv52
1

2p (
n52`

`

R̂nJn ,

~52!

whereJn’s were calculated in@17#,

Jn52E
2p

p

Q~2p2v !e2 invdv

55
~21!n

2p i

n
~12e22nn! ~n.0!

2p2 ~n50!

~21!n
2p i

n
~12e2nn! ~n,0!.

~53!

Using the explicit forms of the Fourier coefficientsR̂n ~47!,
we have

2
1

2p (
n52`

`

R̂nJn52pR̂01 i @2 ln~12e2b!

1 ln~12e2~b12n!!#. ~54!

Hence we obtain

r52R̂05
e2b

12e2b
. ~55!
We shall use the following expression for the functio
R(u,b):

R~u,b!52r2
e2b1 iu

12e2b1 iu
. ~56!

So far, we have employed the variablea ~or u) to solve
the Bethe equation in the thermodynamic limit. To calcula
the finite size correction of the energy gap, it is convenien
introduce another variablej by j5exp(ia)5exp(iu2b). In
this variable, the Bethe equation~27! and the energyEN ~25!
take the forms

F11gj j

11j j
GL

5~2 !N21)
l 51

N
j j2gj l

j l2gj j
, ~57!

EN

12g
5(

j 51

N H j j

11j j
2

gj j

11gj j
J , ~58!

respectively. Following@7#, we introduce a functionZL(j) of
the complex variable,

iZL~j!5 lnF 11gj

jr~11j!
G1

1

L(
l 51

N H lnj l2 lnF12gj l /j

12gj/j l
G J ,

~59!

and its derivative,

QL~j!5 i j
d

dj
ZL~j!. ~60!

We refer toZL(j) as the phase function. Taking the log
rithm of the Bethe equation~57! gives

ZL~j j !5
2p

L
I j . ~61!

In the thermodynamic limit, the functionQN(j) is noth-
ing but the functionR(u,b) ~56! in terms of the variablej:

Q`~j!52r2
j

11j
. ~62!

We can obtain the explicit expression of the phase funct
Z`(j) by integratingQ`(j) @cf. Eq. ~60!#. The integration
constant can be fixed as follows. In terms of the variablej,
the solutions of the Bethe equations for the stationary s
and its neighboring states form a closed contour; it sta
from ep ir/(11r), enclosing the origin clockwise and come
back toe2p ir/(11r). If we definejc

05e2p ir/(11r), we
find

Z`~jc
0!5pr, Z`~e2p ijc

0!52pr. ~63!

These relations can be used to fix the integration consta

iZ`~j!52 ln@jr~11j!#1 lnF rr

~11r!11rG . ~64!
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V. FINITE SIZE CORRECTION OF THE ENERGY GAP

In this section, we analyze the finite size correction of
energy~58! for the first excited state characterized by E
~33!. Assuming appropriate properties of the phase funct
ZL(j) for generalL, we expand the energy gap in powers
L21/2. The real part of the energy gap will be shown to st
from the orderO(L23/2). To obtain the finite size correction
we use the following formula:

(
j 51

N

f ~j j !52
L

2p i E f ~j!QL~j!
dj

j
1

iy

2
@ f ~jc!2 f ~jce

2p i !#

1 (
m51

`

Am@ f #Ym~y!«m, ~65!

where the set$j j% is a solution of the Bethe equation and t
expansion parameter« is

«5Ap

L
. ~66!

The derivation of the formula~65! is given in @7# and is
e
.
n
f
t

briefly summarized in Appendix B with the definitions o
y,jc ,Am@ f #, andYm(y).

First we apply the formula for the phase functionZL(j)
~59!. Here we takef 5 f Z , where

f Z~j8!5 lnj82 lnF12gj8/j

12gj/j8
G5 lnj81 (

nÞ0

1

n
g unuS j8

j D n

.

~67!

This then leads to an integral equation forQL(j), which can
be solved by the Fourier transformation method. Using E
~65! and ~67! in Eq. ~59! gives

iZL~j!5 lnF 11gj

jr~11j!
G1

1

L (
j 51

N

f Z~j j !

52r lnj1G~j!2
1

2p i E f Z~j8!QL~j8!
dj8

j8
,

~68!

where
G~j!5 lnF11gj

11j G1d2
1

p (
m51

`

(
k51

m

bm,kH (
n

~21!k~n11!•••~n1k21!

k! jc
k

g unuS j

jc
D nJ Ym~y!. ~69!

Here and hereafter(n indicates the sum over all integersn. We obtain the expression for the phase functionZL(j),

iZL~j!5 ipr1d2
1

p (
m51

`

(
k51

m

bm,k

~21!k

kjc
k

Ym~y!«m122r ln
j

jc
1 ln

11jc

11j
1

1

p (
m51

`

(
k51

m

bm,k$gk~j!2gk~jc!%Ym~y!«m12,

~70!

with

gk~j!5
~21!k21

k! jc
k (

nÞ0
~n11!•••~n1k21!

a unu

12a unuS j

jc
D n

. ~71!

If we setj5jc in Eq. ~70!, we find

05 (
m51

`

(
k51

m

bm,k

~21!k

kjc
k

Ym~y!«m12, ~72!

due to Eq.~B1!.
Having determined the phase functionZL(j), we next apply Eq.~65! to the energy~58!. We set f 5 f E , where

(12g) f E(j) is the one-particle energy~16! in terms of the variablej. It reads

f E~j!5
j

11j
2

gj

11gj
5 (

n51

`

~21!n21~12gn!jn. ~73!

Applying the summation formula~65! for the energy yields

EN

12g
52

L

2p i E f E~j!QL~j!
dj

j
1

iy

2
@ f E~jc!2 f E~jce

2p i !#1 (
m51

`

Am@ f E#Ym~y!«m. ~74!

The first term on the right-hand side is calculated as

1

2p i E f E~j!QL~j!
dj

j
5 (

n51

n

n~21!nG2n , ~75!
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whereGn denote the Fourier coefficients ofG(j):

G~j!5(
n

Gnjn. ~76!

Moreover, the definition ofAm@ f # ~B7! together with the
explicit form of f E(j) ~73! gives

Am@ f E#52 (
k51

m

(
n5k

`

bm,k

n~n21!•••~n2k11!

k!

3~21!n~12gn!jc
n2k . ~77!

Thus we obtain

EN

12g
5 (

m51

`

(
k51

m

bm,kF2
1

11jc
Gk11

Ym~y!«m

5 (
m52

`

(
k52

m

bm,kCk@jc#Ym~y!«m, ~78!

with

Ck@jc#5~21!k21
~11jc!

k211kjc
k21

k~11jc!
k11jc

k21
. ~79!

Here we have used Eq.~72! to eliminate theO(«) term in
the series.

For the calculation of theO(«2) andO(«3) terms, we can
simply set jc5jc

05e2p ir/(11r). After some computa-
tions, we obtain

EN

12g
52p i ~122r!

1

L
12~31r!A r

11r
C

1

L3/2
1•••,

~80!

where C is a constant given in @7#. Numerically,
C56.509 . . . . Theexpansion~80! shows that the real par
of the energy gap isO(L23/2) in the lowest approximation
This suggests that the MADM belongs to the KPZ univers
ity class.

VI. CONCLUDING REMARKS

In this paper, we have proposed an asymmetric diffus
model of many particles. The model is defined in terms
l-

n
f

the master equation for the probabilityPN(x1 , . . . ,xN ;t) of
finding N particles on lattice sitesx1 , . . . ,xN at time t. The
master equation is given by Eq.~10! with condition ~12!.
Condition ~12! is translated into the master equation f
PN(x1 , . . . ,xN ;t) with some xj ’s being equal. Especially
the master equation forPN(x, . . . ,x;t) (x15•••5xN5x)
turns out to be written in a compact form~14! using theq
number~9!. In contrast with the asymmetric simple exclu
sion process~ASEP!, each lattice site can contain more tha
one particle. In addition, more particles than one can h
simultaneously to the left or right nearest neighboring s
This is the reason why we have called the model
multiparticle-hopping asymmetric diffusion mode
~MADM !. The most remarkable feature of the model is th
the model can be solved quite parallel to the ASEP. T
eigenfunctions of the model are constructed by the conv
tional Bethe ansatz method. The resulting Bethe equation
been analyzed in the thermodynamic limit. The finite s
correction of the energy gap is calculated to beO(L23/2),
whereL is the length of the chain. This scaling law is th
same as that for the ASEP. It suggests that the model defi
in this paper is in the Kardar-Parisi-Zhang universality cla

In this paper, we have only considered the model w
stochastic interpretation. Similar analysis should be poss
for a generalized model without such interpretation. It wou
be interesting to pursue the similarity, for instance, with t
asymmetricXXZ chain. Besides, the Bethe equation for t
q-boson model in@22# can be analyzed in a similar manne
though some modifications are needed. The problem is n
under investigations and the results will be reported in fut
publications.
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APPENDIX A: MASTER EQUATION WITH SAME
VARIABLES

In this appendix, we confirm Eq.~14! from Eqs.~10! and
~12!. First we prove the relations
~A1!

by the induction. ForN52 they reduce to a single defining relation~7!. We assume that the relations are valid forN. From
the relations forN, we have
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~A2!
u

f

th
se
a

Solving the system of the equations and using the form
@N21#@N11#1gN215@N#2 for the q number~9!, we ob-
tain the relations~A1! for N11.

Now we prove Eq.~14! again by the induction. ForN
52, Eq.~14! reduces to Eq.~8!. We assume Eq.~14! is valid
for N and derive it for N11. We want to setx15•••

5xN115x in Eq. ~10! for theN11 case. This is done in two
steps. For the functionPN11(x1 ,•••,xN11 ;t) with x1
5 . . . 5xN5x, we can use Eq.~14! for N. We then find

~A3!

SettingxN115x in Eq. ~A3!, using the second equation o
Eqs.~A1! and noticing the formula

(
l 51

N
g l

@ l #@ l 11#
512

1

@N11#
, ~A4!

for theq number, we obtain Eq.~14! for N11. Thus we have
proved Eq.~14! for any N(>2).

APPENDIX B: SUMMATION FORMULA

In this appendix, we give some definitions related to
summation formula~65!. First we assume that the pha
function ZL(j) for finite L has a vanishing derivative at
certain value ofj and definejc by the relationdZL(jc)/dj
50. SincedZ`(jc

0)/dj50, jc is expected to be close tojc
0

for largeL. In addition, defined by the relation

ZL~jc!5pr2 id. ~B1!
l

la

e

Comparing Eq.~B1! with Eq. ~63!, we see thatd becomes
small for largeL. Assuming the analyticity ofdZL(j)/dj at
jc , the inverse functionZL

21 of ZL(j) is put in the form

ZL
21~pr2j!5jc1 (

m51

`

am~2 iAd1 i j!m. ~B2!

Consider the sum of the form( j 51
N f (j j ) where the set

$j j% is a solution of the Bethe equation~57!. Due to Eq.~61!,
the sum is written in the form

(
j 51

N

f ~j j !5(
j 51

N

f XZL
21S 2p

L
I j D C. ~B3!

To evaluate the sum, we use a formula@6#

(
j 51

N

f ~ j !5E
1

N

f ~ t !dt1
1

2
@ f ~N!1 f ~1!#

12E
0

` f̃ ~N,t !2 f̃ ~1,t !

e2pt21
dt, ~B4!

where f̃ (s,t)5@ f (s1 i t )2 f (s2 i t )#/2i . After some calcula-
tions, we obtain Eq.~65! with the definitions ofy, Ym(y),
andAm@ f #,

y5dL/p, ~B5!

Ym~y!5Ym
0 ~y!1~2 iAy2 i !m2~2 iAy1 i !m,

Ym
0 ~y!5ReS m12iy

m12
~2 iAy1 i !m

1
1

i E0

`~2 iAy1 i 1t !m2~2 iAy1 i 2t !m

ept21
dtD ,

~B6!

Am@ f #5 (
k51

m
bm,k

k!
f ~k!~jc!, ~B7!

S (
m51

`

am«mD k

5 (
m5k

`

bm,k«
m, ~B8!

where f (k) denotes thekth derivative off (j).
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